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ABSTRACT 
It is already more and more accepted by the researchers working in the 

manufacturing area, that the cutting process dynamics is nonlinear and, more than 
that, there is proof to support this assessment, under certain conditions, of chaos. 
The paper presents the authors’ research, performed in order to reveal the potential 
chaotic character of the cutting process dynamics. A cutting process characteristic 
parameter – the cutting force - was measured and its variation was analyzed by 
using Chaos Theory specific tools. Experimental results and conclusions are also 
presented. 
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1. INTRODUCTION 

 
Classical theory of cutting stability starts from 

the regenerative phenomenon, according to which the 
current cutting cycle is determined by the 
perturbations appeared during previous cycle and its 
fundamental physical model is shown in Fig.1. Elastic 
deformation from previous cycle, y(t-T), induces 
cutting force F variation, which further determines 
y(t) deformation of mechanical structure during 
current cycle. As consequence, chip real thickness is 
given by 

 
( ) ( ) ( ) ( )TtytytataBD 0 −+−== , (1) 

 
where a0 means the nominal chip thickness. 
 

 
 

Fig.1  Cutting process physical model 
 

The system diagram describing perturbations 
regeneration phenomenon is shown in Fig.2 and 
enables to find system transfer function, 
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Fig.2  Manufacturing system diagram: 
a0/a – nominal/real chip thickness; y – system elastic 

deformation; T – cutting cycle duration; F – cutting force. 
 
Stability is approached based on the general 

stability criterion, according to which if one of the 
characteristic equation solutions has a positive real 
part, then the system is unstable. Referring to cutting 
process, the characteristic equation is 

 
( ) ( )( ) 0e1sYsY1 sT

21 =−+ − .  (3) 
 
To find the limit separating stable from unstable 

domains, we must impose to the characteristic 
equation pure imaginary solutions, resulting in the 
following equation of stability limit: 
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( ) ( )( ) 011 21 =−ωω+ ω− TjejYjY .  (4) 
 
In the current cutting stability theory, transfer 

function Y1(jω) is considered to be a real constant, by 
entirely neglecting cutting process dynamics. On the 
other hand, the system’s mechanical structure is 
considered linear, which allows to look at Y2(jω) as 
the frequency characteristic of the mechanical 
structure (that can be experimentally found). Under 
these conditions, stability limit results from the 
relation 

 
( ) ( )ω=ω jBjA ,    (5) 

where 
( ) ( ) ( )ωω=ω jYjYjA 21   (6) 

and 

( )
1e

1jB Tj −
=ω ω− .   (7) 

 
To solve this equation, a graphic-analytical 

method is used, Fig.3, where, by increasing A(jω) 
constant, the expanding of the frequency 
characteristic Y2(jω) is obtained, until touching B(jω) 
line, when instability phenomenon appears. 

 

 
 

Fig.3  Graphic-analytical method  
to find the stability limit [2] 

 
Recent evolutions in the cutting stability theory 

are concretizing through a significant number of 
papers, dedicated to theoretically investigate new 
methods and models to study manufacturing 
processes dynamics, [4-10], by going away from the 
classical cutting model and based on new approaches. 
It should be mentioned that, in almost all the cases, a 
non-linear model is firstly developed and then, a 
comparison to the real cutting processes is done by 
numerical modelling. 

 
2. LIMITS OF CURRENT THEORY  
    CONCERNING THE STABILITY 

 
Even by considering the recent scientific 

contributions to the cutting process stability theory, a 
critical analysis reveals the following limits and 
unclarified matters: 

• Cutting process dynamics is not considered, 
although in the cutting instability phenomenon it 
plays an essential role. Thus, it cannot be explained 
the dependence between cut material – chip shape – 
process stability (e.g. comparative stability between 
steel and bronze). 

• There is no explanation for dependence between 
cutting speed and feed rate, on one hand and 
stability limit, on the other hand, as this dependence 
can be experimentally observed.  

• Current approach cannot explain neither why 
instability only appears when wave length of traces 
let by self-excited vibration on workpiece’s surface 
has values between 0.5 and 12 mm and nor why at 
the middle of the interval the stability has a 
minimum level, as the authors of this paper 
observed during their experimental research. 

• Current theory cannot enable to find functioning 
point position referred to stability limit. More 
precisely, it cannot appreciate the reserve of stability 
existing at a given moment. 

• To find the stability limit, in the context of the 
actual stability theory, means to know the system’s 
frequency characteristic. To obtain it, supposes to 
follow a complex experimental plan. But, right in 
the moment when the tool moves along the worked 
piece generating line, the frequency characteristic 
permanently changes. Thus, the current theory does 
not offer the possibility of monitoring, in real time, 
the technological system’s reserve of stability. This 
is the reason to intervene on the system only after it 
reached the unstable functioning domain. 

 
3. THE POTENTIAL CHAOTIC  
    CHARACTER OF THE 
    CUTTING PROCESS DYNAMICS 

 
As it is known, cutting processes stability 

classical theory is based on a linear dynamics 
approach, developed by starting from the block-
scheme shown in Fig.2, where the transfer function Y1 
(characterizing the cutting process) is a constant while 
the transfer function Y2 (characterizing the 
technological system) is a linear function. This 
approach cannot explain the stability limit 
dependence to machining speed and feed. On the 
other hand, there are situations when the instability 
phenomenon cannot be understood by using the 
classical approach. 

Research already developed by the authors of 
this paper lead to the idea that cutting should be 
treated as chaotic process, with bifurcation points, 
attractors and limit cycles – the dynamics’ transition 
from stable to unstable or inverse meaning, in fact, the 
transition between two limit cycles. This could further 
lead to a better understanding of the conditions to pass 
from stability to instability and also to the opportunity 
of developing an intelligent tool for realizing the 
stability control. 
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3.1. The largest Lyapunov exponent 
       of cutting force time series 
 
The main feature that characterizes the chaotic 

character of a certain process is “the largest Lyapunov 
exponent”, which may be defined as 
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where Δt is time series sampling period, dj(i) – the 
distance between the jth pair of nearest neighbors after 
i discrete time-steps, M – the number of reconstructed 
points. A positive largest Lyapunov exponent is 
sufficient to diagnose chaos and represents local 
instability in a particular direction. 

By assuming that there is a connection between 
cutting force variation and cutting process dynamics 
character, we calculated this exponent in the case of 
cutting force time-series. To do this, first, cutting 
force values must be discretely measured for a certain 
time interval, by a Δt increment and recorded as a 
time series. We used a SPIDER 8 data acquisition 
device, with 9600 scan/s; it was placed on the cutting 
tool, as close as possible to the cutting edge, in order 
to minimize other devices’ inertial forces influence.  
Then, the file including time series record can be 
analyzed by using a dedicated soft [3], to calculate the 
largest Lyapunov exponent. 

The above mentioned algorithm was applied to 
analyze the turning process. Cutting tests were 
performed on a turning machine, by manufacturing 
exterior cylindrical surfaces (40 mm diameter) of 
ordinary steel workpieces, with a cutting tool having a 
setting angle of 90º. Different rotation speeds 
(between 100 and 800 rot/min) were successively 
used; the feed was of 0.2 mm/rot while the depth of 
cut was set to 6 mm. The cutting force was discretely 
sampled by a time increment Δt = 1/9600 s. 

We have chosen only eight of the files 
containing cutting force values, considered 
representatives (because some of the files are similar), 
and we have analyzed them by using the special 
dedicated soft. The values obtained for largest 
Lyapunov exponent, λ, in these cases were: 0.5953, 
0.6450, 0.6565, 0.3210, 0.4546, 0.4347, 0.5738, and 
0.5983. It means that the considered cutting processes 
should be treated as chaotic. 

 
3.2. Poincaré map of cutting force time series  

 
In the mathematical study of dynamical systems, 

a map refers to a time-sampled sequence of data 
( ) ( ) ( ) ( ){ }Nn tx,,tx,,tx,tx KK21  with the notation 

( )nn txx = . A simple deterministic map is one in 
which the value of xn+1 can be determined from the 
values of xn. This is often written in the form 

 

( )n1n xfx =+ .    (9) 
 

The idea of a map can be generalized to more 
than one variable. For example, suppose we consider 
the motion of a particle as displayed in the phase 
plane ( ) ( )( )tx,tx & . However, if instead of looking at the 
motion continuously, we look only at the dynamics at 
discrete times, then the motion will appear as a 
sequence of dots in the phase plane. If ( )nn txx ≡  and 

( )nn txy &≡ , this sequence of points in the phase plane 
represents a two-dimensional map: 

 
( )
( ).y,xgy

;y,xfx

nn1n
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=
=

+

+    (10) 

 
When the sampling times tn are chosen 

according to certain rules, this map is called a 
Poincaré map. When there is a driving motion of 
period T, a natural sampling rule for a Poincaré map is 
to choose 0τ+= nTtn . This allows one to distinguish 
between periodic motions and non-periodic motions. 

We intended to confirm the chaotic character of 
cutting process dynamics by drawing Poincaré maps 
based on cutting force, F, values time series. By using 
a dedicated soft to calculate points’ co-ordinates and 
AutoCad to realize the graphical representation of 
dependence between F& and F, Poincaré maps were 
obtained. If normally the picture has the shape of a 
single cloud of points, in some cases we found maps 
as it can be seen in Fig.4. 

 

 
 
          

Fig.4  Poincaré maps drawn based  
on cutting force time series 

 
Poincaré map from Fig. 4 was drawn by using a 

file including 4000 measured values of the cutting 
force, during a turning process performed with a 
rotation speed of 500 rot/min. 

The existence of two sets of points suggests the 
existence of a bifurcation point between two limit 
cycles – aspect characteristic to systems with chaotic 
dynamics. 

If we consider the Logistic model, the most 
popular one-dimensional chaotic model,  

 
( ) 1n,x1xrx nn1n ≥−⋅=+ ,  (11) 
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where 0 < x1 < 1 and the control parameter, r, takes 
values close to 4, then one of its properties becomes 
interesting for us: if r is around the value of 3.83, the 
Logistic model’s map consists in period-3 cycles, 
interrupted by sections with chaotic aspect (Fig.5), 
while in other cases (e.g. r > 3.85 or r < 3.8) the map 
is completely chaotic. 
 

 
 

Fig.5  Logistic model map, r = 3.8282 
 

 
 

Fig.6  Cutting force variation, n = 400 rot/min 
 

 In Fig. 6, one can see that cutting force variation 
may be similar to the map from Fig.5 (referring to the 
succession between two types of sections). 

If a Logistic-type model (with a certain value for 
r) will be found to characterize the cutting force 
variation during a given manufacturing process, then, 
by monitoring the cutting force, in fact we will be 
able to know, in real time, the value of the control 
parameter. By accepting that the commutation 
between chaotic and periodic sections (Fig.5) means, 
by analogy, when referring to the cutting process, the 
commutation between stable and unstable dynamics, a 
tool to find when the instability risk occurs could be 
developed starting from here. 

 
4. CONCLUSIONS 
 
The limits of the classic theory concerning 

cutting process stability and the current expectations 
from the modern manufacturing systems require a 
new approach in this domain. 

Because it cannot refer the manufacturing 
system operating point to its stability limit, the current 
theory does not offer the possibility of entirely 
exploiting the technological system reserve of 
stability. The interventions in the system can be done 

only after it reached the unstable functioning domain. 
Any kind of stability prognosis is impossible, 
especially on-line, and that is why the actual 
technological systems do not have a system to control 
stability. 

The results presented above in this paper open 
the way for going over the enounced limits, through a 
new theory concerning cutting process stability, based 
on chaotic models.  

Grounded on the new theory, an intelligent 
system to control cutting stability could be imagined 
and realized, leading to a complete exploitation of 
technological system resources of productivity, by 
working with cutting regimes more intense, closer to 
the limit of stability domain. Thus, it will result both a 
maximisation of manufacturing processes efficiency 
and a superior quality of manufactured surfaces, by 
eliminating the risk of the instability appearance. 
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