
THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI 

FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING,  

ISSN 1221- 4566, 2009 

 

 

107 

 

 

 

 

Numerical investigation of the Bauschinger effect during the low reversal cyclic 

torsion, three point bending and tension/compression tests 
 

Konrad Perzynski
1
, Lukasz Madej

1
,  

Krzysztof Muszka
2
 and Maciej Pietrzyk

1 

 

1
Department of Applied Computer Science and Modelling 

2
Department of Metal Forming 

Akademia Górniczo-Hutnicza, Al. Mickiewicza 30, 30-059 Kraków, Poland 
kperzyns@metal.agh.edu.pl 

 

ABSTRACT 
Creation of a robust numerical model of the low cyclic deformation processes is 

essential for accurate predictions of the inhomogeneities occurring during industrial 

processes, especially when sheet materials are considered. Development of such 

model is the main subject of the present work. In order to evaluate material behavior 

under cyclic deformation conditions several simple plastometric test were selected. 

Particular attention is paid to the effect of the cyclic deformation on the material 

behavior along the radius of the deformed cylindrical sample in cyclic torsion and 

tension/compression tests, as well as along thickness of the sample in the three point 

bending. Obtained results are also compared with the commonly used in industry 

conventional isotropic hardening model. Finally, based on this analysis, conclusions 

regarding the possibility to apply investigated tests in identification of the material 

model parameters through the inverse analysis are drawn.  
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1. INTRODUCTION 
   

The numerical modeling of material behavior 

under thermo-mechanical processing conditions is 

widely used in both experimental research and 

industrial applications. Accuracy of numerical 

simulations depends, to a large extent, on the 

correctness of description of material properties, as 

well as on mechanical and thermal boundary 

conditions. Accurate evaluation of the rheological 

parameters in various conditions of deformation is 

one of the challenges in simulation. It can be said that 

conventional models describe properly materials 

subjected to deformation in a reasonably uniform and 

monotonic conditions [10]. However, when process 

with complex stress states (i.e. during reversal cyclic 

deformation) is considered, conventional rheological 

models fail to accurately describe the material 

behaviour. Cyclic deformation is particularly 

interesting from the industrial point of view because it 

may lead to a reduction in applied loads followed by 

the energy conservation. When material is subjected 

to severe axial deformation with the cyclic change in 

the strain path, micro shear band development is the 

major mechanism responsible for the mentioned 

effect. This observation is the basis of the proposed 

Structure Based Design of Metal Forming Operations 

(SBDMFO) [4] and was successfully applied to 

industrial scale extrusion with additional cyclic 

oscillations of the die [1]. Development of the 

rheological model to simulate this kind of processes 

was the subject of earlier authors works [6,7] and is 

not discussed in the present paper.  

However, when material is subjected to a low 

cyclic oscillation, another interesting phenomena 

become important – the Bauschinger effect [3]. 

According to its definition, the Bauschinger effect is a 

transient decrease in the work hardening rate upon 

reversal of the loading direction. Simply, when a 

material is subjected to loading under tension, the 

yield stress ( t ) occurs at some specific level, after 

that when material is reloaded under compression 

( c ), yielding occurs at the lower stress level, as it is 

shown in Fig. 1.  

There is a number of the hardening models that 

do take into account this effect [8,2,5]. Review of 

these models can be found in authors earlier 

publication [9]. For the purpose of the present work a 

combined kinematic isotropic hardening model was 

selected. The obtained results are compared with the 
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outcome from the conventional isotropic model. Short 

summary of the major assumptions used in this work 

are described in the following section.   

 

 
Fig. 1. Illustration of the Bauschinger effect.  

 

2. CYCLIC DEFORMATION  

  MODEL 
 

 As mentioned earlier, in order to solve problems 

which include the Baushinger effect, it is important to 

find an accurate hardening model.  One of such 

models is a combination of the isotropic and 

kinematic hardening models. In the isotropic approach 

the centre of the yield surface is fixed in the stress 

space, while size of the surface increases. This 

approach is commonly used to model large plastic 

deformations performed in a monotonic manner. 

Contrary in the kinematic model the size of the yield 

surface is fixed, while the centre of the yield surface 

can move. Both approaches have their advantages and 

disadvantages. There is also a possibility to combine 

these two models and to create a combined model, 

where both the size of the yield surface increases and 

the centre of the yield surface moves in the stress 

space, as seen in Fig. 2.  

 

 
Fig. 2. Yield surface evolution in combined 

hardening model. 

 

The combined model is the most complicated 

but, at the same time, the most accurate in description 

of material behaviour during low cyclic deformation. 

This model can be incorporated into one of the most 

commonly used description of the yield surfaces: the 

von Mises one. In this approach two state variables 

have to be used: the kinematic and the isotropic 

hardening variables. As mentioned earlier, the 

kinematic variable accounts for the translation of the 

yield surface, while the isotropic variable accounts for 

its change in size or expansion. Since in metallic 

materials the hydrostatic stress has no effect on the 

plastic deformation, the von Mises yield surface is 

defined in the deviatoric stress tensor components: 
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where: p

ij - plastic strain increment tensors,  - a 

positive scalar factor of proportionality, f - plastic 

potential function identical to the yield function if the 

associated flow rule is used.  

The plastic potential function is defined as: 
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where
ij


are the deviatoric components of the stress 

tensor 
ij ,

ij  is the backstress tensor which defines 

the center of the yield surface, p is the initial yield 

point, and R is the isotropic hardening variable.  

The evolution of the backstress tensor is described by 

the equation: 
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where C and  are material parameters and 
i  is the 

equivalent strain rate defined as: 

 

 2

3
i ij ij           (4) 

 
It is crucial to perform an identification of the 

parameters used to describe the isotropic and 

kinematic part of this model. An inverse analysis can 

be used for this purposes, what is described in the 

chapter 4 of the paper.  

 

3. NUMERICAL ANALYSIS 
 

 The cyclic tests of torsion, three point bending, 

and tension/compression are commonly used to 

investigate the Baushinger effect and to analyse the 

material behaviour upon strain reversals (Fig. 3). 

Numerical models of all these tests were created in 

the present work and analysed for further application 

during the inverse analysis. All these numerical 

models are based on the commercial finite element 

Abaqus Standard software. At this stage of the 

research, the parameters of the isotropic part, as well 

as kinematic part were taken from the literature [9]. 
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a)

b)

c)

a)

b)

c)
 

Fig. 3. Ilustration of the cyclic torsion (a), three point 

bending (b) and cyclic tension/compression (c) tests. 

  

In order to demonstrate the importance of the 

selection of the appropriate hardening model, the 

comparison between the results obtained from the 

isotropic and combined models is presented.  

The first case is the 3D cyclic 

tension/compression test, the sample was deformed in 

ten cycles. The die translation with the amplitude of 

0.2 mm and frequency of 1 Hz was introduced into 

the FE software to realize this cyclic deformation. The 

results obtained from the two models, isotropic and 

combined, are compared in Figs. 4 and 5. 

 

 

Fig. 4. Stress distribution obtained for the isotropic (a) 

and combined (b) models. 

 

 

 

Fig. 5. Strain distribution for the isotropic (a) and 

combined (b) models. 

 

As it is seen in Figs. 4 and 5, model with the 

combined hardening rule gives different values of 

strains and stresses, despite the fact that the process 

conditions were exactly the same in both cases. This 

behavior is a natural outcome from the fact that the 

isotropic hardening model neglects influence of the 

Bauschinger effect.   

 The second set of simulations was focused on 

cyclic torsion deformations only. In this simulation 

comparison between both models is also considered. 

Again ten cycles of loads were considered. It can be 

observed in Figs. 6 and 7 that the maximal stress and 

strain values occur at the circumference of the sample.  

 

 

Fig. 6. Stress distribution in cyclic torsion in a) 

isotropic and b) combined models. 

 

 

 

Fig. 7. Strain distribution in cyclic torsion – in a) 

isotropic and b) combined models. 
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It is also important to notice that in the centre of 

the sample the material remains in the elastic region. 

This observation is important for the industrial 

processes, where low cyclic deformations play crucial 

role, i.e. during deformation of the sheet/flat 

materials. Thus, another plastometric test that 

involves flat samples was selected to further 

investigate this phenomenon. The three point bending 

of the rectangular sample, which accurately describes 

behavior of the sheet/flat materials under deformation, 

was considered. 

Comparison between both models obtained after 

tenth cycle are presented in Figs. 8 (stresses) and 9 

(strains). In this case the displacement of the dies 

located in the center of the sample was assumed to be 

± 2 mm. A clear distinction between the elastic and 

plastic regions is observed again. The centre of the 

sample remains in the elastic region even after tenth 

cycle. The regions close to middle part of the sample 

near the surface are characterized by significantly 

higher values of accumulated strains, as it is seen in 

Fig. 9.  

 

 

Fig. 8. Stress distribution in model with a) isotropic 

and b) combined hardening after ten deformation 

cycle. 

 

In ordered to apply the discussed models to 

describe material behaviour in industrial conditions, 

their parameters have to be accurately identified. One 

of the possibilities is to use an inverse analysis [13].  

 

Fig. 9. Strain distribution in model with a) 

isotropic and b) combined hardening after ten 

deformation cycles. 

 

4. INVERSE ALGORITHM 
 

The inverse analysis is a method that eliminates 

an influence of disturbances occurring in plastometric 

tests and that allows identification of hardening model 

parameters independently of these disturbances. The 

idea is to combine experimental results with the finite 

element analysis and optimisation algorithms.  

The inverse analysis was governed using a script 

that was written in Python scripting language. Python 

was chosen due to its capability to direct control of 

Abaqus models and output files. The optimisation 

process based on the results from experimental work 

was carried out in the loop until the goal function has 

been minimized. First, the initial hardening model 

parameters were chosen and introduced into Abaqus. 

Then Abaqus job was run and load-displacement data 

were taken out from the output file. The error between 

calculated and experimental data was calculated: 
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where: Fim, Fic – measured and calculated loads, n – 

number of sampling points in the load measurements, 

x – vector with parameters of the material model. 

If the minimum of the goal function was not 

reached, the optimisation simplex technique was used 

and a new set of the model parameters was obtained 

and implemented into Abaqus and new job was run 

with the updated input. When the minimum of the 

goal function was satisfied, a set of the model 

parameters was obtained and the analysis was 

finished. Schematic illustration of the inverse 

algorithm is presented in Fig. 10.  

Two of the discussed earlier plastometric tests 

are considered for the purposes of the inverse 

analysis: the cyclic three point bending and the 

tension/compression tests. Initial results obtained 

from the cyclic tension/compression test are presented 

in this paper. It is essential to properly select 

displacement values during the experiments, to avoid 

problem with the necking and buckling.  

The comparison of the load-displacement curves 

obtained after four cycles from the experiment and 

after inverse analysis (112 iterations) is presented in 

Fig. 11. As it is seen in this figure there are still some 

discrepancies between the calculated and the 

experimental loads. These discrepancies are 

particularly large during the first compression stage. 

In the future, more advanced optimisation techniques 

will be applied, that should solve the problem of 

locking the solution in the local minima and improve 

the accuracy of the solution.  

 

Update Abaqus 
input file

Read initial hardening 
model parameters

Read Abaqus odb file

Calculate error using 
goal function Φ(x) 

Change model 
parameters. Minimize 
Φ(x) with respect to x

End analysis. Output 
current model parameters

Read load-displacement 
data from T/C test

Run Abaqus job

Is reduction in goal 
function still possible?

YES

NO

 
 

Fig. 10. Schematic flow chart of the inverse procedure 

used for identification of the model. 

 

 

Fig. 11. Comparison of the results of the numerical 

experiment and the inverse analysis. 

 

5. CONCLUSIONS 
 

An appropriate hardening model, which 

accounts for the phenomena that are crucial for 

particular deformation process, is needed to create a 

reliable numerical FE model for industrial 

applications. An identification of the parameters of 

the selected model is another important issue.  

The combined isotropic - kinematic hardening 

law that takes into account the Bauschinger effect was 

investigated in various plastometric tests. Results 

obtained from the tension/compression, torsion and 

three point banding test reveal weak points of the 

separate isotropic model and kinematic hardening 

model and confirm necessity of using appropriate 

combined hardening model.  

Based on the performed analysis of the torsion 

and three point bending tests, regions where material 

remains in the elastic region during low cyclic 

deformation were identified. These simple numerical 

tests provide valuable information that helps 

engineers to design real industrial processes and solve 

problems that can appear.  

A proper determination of parameters in the 

cyclic hardening models for selected materials, based 

on the experimental data, was the second goal of this 

work. Inverse algorithm, which combined with the 

three point bending experiments allows to reach this 

goal, is proposed in the paper. Initial parameters of 

the combined hardening model were identified but the 

accuracy was not satisfactory. Further work to obtain 

better agreement between numerical and experimental 

results has to be performed. 

The better understanding of the cyclic behaviour 

of materials will enable creation of more robust 

numerical models of the low cyclic plastic 

deformation. This is essential for predicting 

inhomogeneities occurring during deformation with 

strain path changes.   
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