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ABSTRACT 

The methods of cold rolling of rods are widely used in manufacturing industries 
to obtain pieces with complex profiles. In this study, complex profiles with grooves 
have been formed by in-feed methods using two rolls. The microhardness has been 
measured by Vickers method in an axial section of the rolled piece. The process also 
has been simulated by means of finite element calculations using the 
Abaqus/Explicit code, giving the distributions of yield stress and residual stress at 
the end of the process. Finally, a comparison is made between experimental and 
simulated results. 
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1. INTRODUCTION 

 
Complex profiles (threads, teeth etc.) can be 

found as part components in the automotive industry, 
air industry, appliances etc. Their processing by cold 
rolling has certain advantages as compared to the 
cutting process: the dimensional precision is situated 
at 6-7 level for the threads, 7-8 for the worms and 
cylindrical teeth and stages 6-8 for the notches; the 
roughness Ra is generally lower than 4 µm; and the 
physico-mechanical properties of the superficial 
layers are substantially improved (microhardness, 
thickness of the deformed layer, crystallographic 
texture, residual stresses, resistance to fatigue and 
mechanical resistance). 

An important objective of the deformation 
processing of metals and alloys is the production of 
defect-free parts, with the desired microstructure and 
properties. This goal can be achieved through a better 
design and calculation method and a better control of 
the process parameters. 

In recent years, a large number of studies have 
been devoted to the analysis and modeling of the 
mechanics of metal-forming processes, using more 
and more processing and simulation methods, which 
combine the classical research with the numerical 
simulation by means of the finite element (FE) 

modeling. The advances that were achieved using the 
accumulated knowledge have enabled the forming 
industry to improve product performance, service life 
and process competitiveness [3]. 

The FE modeling of cold rolling uses numerical 
models of the elements involved in the working 
process, blank material – tools, with the aim of 
computing the evolution of different quantities during 
the process: the stresses and strains within the 
deformed body, the material flow paths, the final 
profile of the parts. 

The preoccupations of the FE modeling of the 
cold rolling process started in 1990’s [1, 3], but the 
high volume of necessary calculations and the 
computers incapacity to simulate the process within a 
reasonable time, restricted these studies to the 
understanding of the deformation process [1 - 4], by 
analyzing the state of stresses and strains of circular 
profiles at different degrees of deformation. 

The researches intensified after the year 2000, 
together with the development of the simulations 
software and with the growing computational capacity 
of computers [5 - 12]. The main elements of these 
researches are the material of the piece, piece profile 
and rolling process, with particular attention to the 
plastic behavior of the material, the meshing elements 
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and the software’s used for simulations (MARC, 
ABAQUS, DEFORM, MSC Super Form ...). 

In this study, complex profile with grooves has 
been formed by in-feed method using two rolls. This 
paper focuses on the development of the three-
dimensional FE models and validation results based 
on microhardness measurements. The experimental 
microhardness was measured on the axial section of 
the tooth by Vickers method and the process was 
simulated using the Abaqus/Explicit code. 
 

2. EXPERIMENTAL PROCEDURE 
 

Because threads are incrementally formed by 
progressive penetration of the dies into the blank 
surface during a fixed number of blank revolutions, 
external thread rolling operations can be represented 
approximately as plane strain compression of a 
workpiece using a parallel set of wedge-shaped 
indentors. For this reason, the profile generated by 
radial cold rolling using two rolls and in-feed method 
was a concentric channels surface (three grooves 
similar to trapezoidal thread Tr 30x6, fig. 1). 
 

 
The materials used in this investigation were 

steels OLC 15 and OLC 35. Their chemical 
composition and microhardness are given in Table 1. 

The measurements of the microhardness were 
made by Vickers method. This method allows us, at 
the same time, to use small loads and to compare the 
results with other mechanical quantities. The load was 
taken equal to 200 g, in order to take account of 
estimated microhardness and of the size of grains 
after cold rolling. The pieces were cut by electro 
erosion and then they were finely ground for 
measurement of the microhardness in axial section of 
the tooth. The microhardness indentations were 
performed on several lines and along two directions, 
parallel to the flank of the tooth and to the axis of the 
piece, respectively. For each direction the distance 
between indentations was 0.5 mm. 
 

3. NUMERICAL PROCEDURE 
 

The numerical calculations were performed with 
the dynamic explicit FE code Abaqus/Explicit.  

The elastic behavior of the workpiece is 
modeled by assuming isotropic elasticity, with the 
values of Young’s modulus, E = 200,000 MPa and 
Poisson’s ratio, ν = 0.3. Strain hardening is described 
using the von Mises criterion with the assumption of 
isotropic hardening. Accordingly, the yield function is 
given by: 

 

σ−= ijij ssf
2
3

    (1) 

where ijs  are the deviatoric stress components, 

( ) ijij ss2/3  is the von Mises equivalent stress and 

σ  is the current yield stress. In accordance with the 
best-fit curves obtained in torsion tests (see section 4), 
strain-hardening was described by the Ludwik law: 

 
NKεσσ += 0     (2) 

 
where ε  is the effective strain, and 0σ , K and N are 
material constants. 

The workpiece was meshed using a non-uniform 
distribution C3D8R hexahedral element. The previous 
metallographic examination of rolled pieces shows 
that deformation is concentrated in the superficial 
layers of the blank with very little straining of grains 
in the workpiece interior. Based on this observation, a 
dense mesh was used in the deformation zone near the 
blank surface and a coarser mesh was applied in the 
blank interior to ensure compromise between the 
number of elements (68,955) and accuracy of results, 
fig. 2. In particular, the mesh is made of elements 0.2 
mm long in the regions where grooves are formed. 
 

 
 
 

Fig. 1. Form of the profile rolling 

Table 1. Chemical composition and initial microhardness of the steels
Chemical composition (wt %) Materials C Si Mn Cr Ni Mo P, S 

Microhardness (average) 
Vickers 200 g [MPa] 

OLC 15 (SAE 1015) 0,13 0,21 0,9 0,23 0,24 0,07 < 0,035 1570 
OLC 35 (SAE 1035) 0,33 0,16 0,85 0,14 0,15 0,03 < 0,035 2060 

 
Fig. 2. Finite element mesh used for the workpiece
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The tools are defined by discrete rigid surfaces. 
Friction between the contact surfaces is defined with 
Coulomb’s friction model. The friction coefficient is 
taken equal to 0.3 between tools and workpiece and to 
0.01 between workpiece and piece-support. Boundary 
conditions, fig. 3, are defined as follows: 

- the workpiece is free; 
- one roll-die has two freedom degrees: a 

rotation around its axis and an in-feed 
translation; 

- the other roll-die has a rotation around its 
axis; 

- the piece-support is considered to be fixed. 
 

Fig. 3. ABAQUS model for numerical simulation 
 

4. RESULTS AND DISCUSSION 
 

For blank materials, the microhardness HV 
measured by Vickers method is found to be 
proportional to the initial yield stress Yσ , i.e.: 

 
HV = Yασ      (3) 
 

where the proportionality factor α  is close to 3. For 
plastically deformed materials, Yσ  in equation 3 
should be replaced by the current yield stress σ  in 
order to take account of strain-hardening. 

A comparison between experiments and 
calculations will thus be made by considering the 
distributions of HV and σ  in an axial section of the 
piece. The von Mises equivalent stress, calculated 
after unloading of the piece, is also examined to 
quantify the level of residual stresses. 

In order to model strain-hardening in the FE 
simulations, the effective stress-strain law of the 
materials was determined using torsion tests. The 
results obtained in tension tests were not considered, 
because of the very low level of uniform elongation 
which could be reached in these experiments 
( =ε 3% for OLC 15, =ε  2% for OLC 35). The 
shear stress (τ ) and shear strain (γ ) at the surface of 
the specimen were calculated using the recorded 
values of torque ( tM ) and rotation per unit length 

( uθ ) by means of the classical formulae:  
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where R is the radius of the torsional specimen. The 
results were then converted to effective values of 
stress (σ ) and strain (ε ) according to the von Mises 
criterion, i.e.: 
 
 τσ 3= ; 3/γε =    (5) 
 

An example of the fit obtained with the Ludwik 
law is given in fig. 4 for OLC 35. The hardening 
parameters of the two materials are reported in Table 
2. 

 

 
Fig. 4. Effective strain-strain law identified in torsion 

 
Table 2. Coefficients of the Ludwik law 

Material 0σ  [MPa] K [MPa] N 
OLC15 480 327 0.1906 
OLC35 550 313 0.1174 

 
The distributions of microhardness (HV) 

measured in an axial section of the piece are presented 
in figs 5a and 6a for OLC 15 and OLC 35, 
respectively. The distributions of calculated yield 
stress (σ ) are shown in figs 5b and 6b. In spite of a 
fairly large scatter in the microhardness 
measurements, the comparison tends to shown a good 
correlation, with the higher levels of HV and σ  at 
the bottom of the tooth flank, and lower values in the 
central part of the tooth. The proportionality factor α  
between HV and σ  approximately varies between 
2.5 and 2.7, a value slightly lower than usually 
reported in the literature.  

Another important information obtained from 
numerical simulations is the very high level of the von 
Mises equivalent stress after unloading of the piece, 
figs. 5c and 6c, which indicates very high values of 
residual stresses in the superficial layers of the piece. 

 

 

Piece-support

Workpiece 

Rolls-die 
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5. CONCLUSIONS 

 
The results presented in this work have shown 

that valuable informations can be obtained by means 
of FE simulations of the cold rolling process, 
concerning the mechanical properties of the piece, in 
particular: the distribution of yield stress in the 
superficial layers, in reasonable agreement with 
experimental measurements of the microhardness, and 
the very high level of residual stresses at the end of 
the rolling process. 
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Fig. 5. Experimental microhardness, calculated yield stress and equivalent residual stress - OLC 15 
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Fig. 6. Experimental microhardness, calculated yield stress and equivalent residual stress - OLC 35 


