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ABSTRACT 
The paper introduces a general procedure for noncircular gear design and 

generation, based on Gielis’ supershape,as the gear pitch curve, and on the 
simulation of the gear cutting process, using rolling method. The procedure 
algorithm consists of the supershape geometry analysis, to identify and separate 
convex curves from convex-concave ones, the selection of the proper tools 
reccomended for “gear cutting process”, the limitation of the pitch curve geometry 
variation, in order to avoid undercutting, and the simulation of rolling. As convex 
noncircular gear generation was developed in a previous paper, the study is now 
focused on the convex-concave gear virtual cutting, using a standard shaper cutter 
and the process’ specific kinematics.  
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1. INTRODUCTION 

 
Noncircular gears keep challengingthe scientists 

due to their ability of producing complex variable 
speed movements in a simple, compact and reliable 
way [1]. A curiosity for the old gear industry, with 
complex geometry and dificulties in manufacture, 
noncircular gears found limited industrial 
applications. Nowadays, the facilities offered by 
virtual modelling and simulation softwares and 
advanced CNC machine tools, design and 
manufacture of noncircular gears have become more 
feasible [2] and encourage the expansion of their 
applications [3], targeting possible substitutions of 
cams, linkages, Geneva mechanisms, electrical 
servomotors etc. 

Once thegear pitch curve is defined, an 
importantfurther step is the generation of the tooth 
flanks profiles. In this context, scientists used 
different approaches, such as enveloping theory, 
analytical generation or manufacturingsimulation. 

Danieli [4] generated noncircular gears’ tooth 
profiles, with constant pressure angle, by integrating a 
differential equation that described the rolling 
between the tool and the gear. To improve contact 
between teeth, Danieli and Mundo [5] used a different 
approach, by mentaining the pressure angle constant 
for any given tooth, but variable from one tooth to 
another. Gao et al. [6] divided the pitch curves of 
elliptic gears into segments and for each segment they 
used the local curvature radii to generate curvature 

circles. Based on these circles, they generated the 
corresponding tooth profiles. 

The enveloping theory, introduced by Litvin [7], 
allowed the generation of noncircular gears’ tooth 
profiles with the same tools used in standard gear 
cutting process. Based on this theory, Litvin et al. [8] 
generated elliptical gears with straight and hellical 
teeth. The same theory was used by Chang and Tsay 
[9], to generate tooth profile with a shaper cutter, and 
by Bair [10], to generate circular arc elliptical gears 
with a rack cutter and a shaper. Based on the 
geometry principles for spherical engagement, Xia et 
al. [11] obtained tooth profiles of bevel noncircular 
gears. 

Instead of deducting and solving complicated 
meshing equations, Li et al. [12] generated 
noncircular gears’ tooth profiles by simulating the 
cutting process by shaper. The tooth profiles were 
obtained from the intersection of the shaper profile 
with the pitch curve’s isometric family of curves. 

In this paper, the generation of the noncircular 
gear is based on the following steps: 
i) modelling of the noncircular gear pitch curve, 
byGielis’supershape formula [13]. The supershape is 
a highly versatile curve, defined by six parameters – 
the length of the traditional ellipse semi-axes, a 
multiplication factor of the variable polar angle and 
three exponents –, whose variations lead to a wide 
range of shapes for the gear pitch curves and thus, 
multiple transmission ratio’s variation laws in a gear 
train; 
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ii) choisen of proper values for the supershape 
defining parameters, considering the curvature of the 
pitch curve and the avoidance of pointed vertex; 
iii) identification of pitch curve convexity and proper 
selection of tools. Once the tool is defined, the 
avoidance of undercutting is considered for the further 
analysis of pitch curve geometry; 
iv) simulation of noncircular gear cutting process. 
 

2. PITCH CURVE GENERATION 
 

In order to generate a pair of conjugated 
noncircular pitch curves, two main hypothesis can be 
considered: the definition of the desired transmission 
function and the definition of the desired driving pitch 
curve geometry. The approach of pre-designed pitch 
curve geometry, also known as Generating Profile 
Method, uses the equation of tranditional or modified 
ellipse [14, 15], Fourier series [16] or various specific 
monotonically increasing functions [17]. 

In the attempt of generalysing the generation 
process of noncircular gears, the authors introduce the 

Gielis supershape equation to model the driving pitch 
curve: 

 
(1) 

 
where a, b are nonzero real numbers that define the 
semi-lengths of the classical ellipse; n - a real number 
that multiplies the polar angle and defines the number 
of lobes of the supershape, ie its rotational simmetry; 
n1, n2 and n3 - real nonzero numbers that lead to 
pinched, bloated or polygonal, symmetric or 
asymetric shapes, depending on their values and 
relationship. 

By varying the six defining parameters of the 
supershape, a wide range of planar curves can be 
obtained (Tab. 1), but it is obvious that not all of them 
can be used as gear pitch curves. The appropriate 
selection of the supershape geometry, admitted as 
pitch curve for noncircular gears, is based on the 
limitation of the defining parameters’ variation, so 
that pointed shapes and those with very small 
curvature radii can be avoided. 
 

Table 1. Supershape families 

 
n = 3, a = b = 1, n1 = 1, 

n2 = n3  [0.2,5] 
n = 3, a = b = 1, n1 = 1, 

n2  [0.2,5], n3 =1 
n = 3, a = 1.5, b = 1, n1 = 1, 

n2 = n3  [0.2,5] 
 

Considering the supershape as a potential gear 
pitch curve, the exponentsinfluence on the 
dimensional homogeneity of eq. (1) is excluded by 
parametrization, using the following 
notations: , şi , where m is the gear 
modulus. 

As a result, eq (1) can be written as: 
 

 
(2) 

 
The problem of selecting proper parameters, in 

order to avoid pointed shapes and those with very 
small curvature radii, has been covered in a previous 
paper [18]. 

 
3. IDENTIFICATION OF THE 

CONVEX-CONCAVE PITCH CURVES  
 
Noncircular gears’ pitch curves, as supershapes, 

can be convex or convex-concave curves, based on 

the defining parameters’ values. Considering the 
necesity to generate tooth profiles, in proper 
conditions, the curvature radius of the supershape is a 
priority in controlling undercutting. From the 
mathematical expression of a planar curve’s curvature 
radius, defined in polar coordinates: 

 

 

(3) 

 
it results that convex curves are generated as long as 
the curvature radius remains positive, respectively, 
the function’s denominator: 

 

(4) 

 
A dedicated Matlab code allows the calculation 

of the curvature radii, its evaluation relative to 0 and 
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the identification of curve convexity, as function of the supershape defining parameters. 
Figure 1 illustrates the block diagram of the 

algorithm used to determine the variation domains of 
parameters n2 and n3 that lead to convex and convex-
concave pitch curves, respectively. In Tab. 2 are 

presented values of the supershape defining 
parameters that induce convex-concave pitch curves 
with 1-3 lobes, scaled to correspond to a gear with 40 
number of teeth and modulus m = 2 mm. 

  

 
 

Fig. 1. Determination of the pitch curve’s convexity 
 

Table 2. Variation domains for exponents n2 and n3 that lead to convex-concave pitch curves 
Semi-axes length n n1 = 1 n1 = 3 n1 = 5 

2 (4.12,15] (11.8,15] - 
3 (2.1,15] (5.44,15] (8.63,15] a = b 
4 (2.1,15] (3.06,15] (5.18,15] 
2 (4.12,15] (11.8,15] - 
3 (2.1,15] (5.44,15] (8.63,15] a > b 
4 (2.1,15] (3.06,15] (5.18,15] 

 
A further analysis on the defining parameters 

variation is developed considering tooth profiles 
generation with a shaper cutter defined by modulus m 
and number of teeth zs. The undercutting appears on 
the concave region of the curve, characterized by the 
minimum radius, min (Fig. 2). 

 

Fig. 2. Undercutting avoidance for teeth generation 
with a shaper cutter 

 
To avoid undercutting, spur gear generation’s 

theory imposes that: 
 

 (5) 
where 

 (6) 

 , the adendum radius of the shaper, is expressed: 

 
(7) 

and 
 

 

 

(8) 

 
where k = 1, 2, 3; as - the pressure angle of the 
shaper. 

 (9) 

          , the adendum radius of the equivalent gear, 

is expressed: 

 
(10) 

and 

 

 

(11) 

where k = 1, 2, 3; fp – pressure angle of the 
equivalent gear; ze – teeth number of the equivalent 
gear: 

 
(12) 

 
The validation of Eq. (5) leads to the 

determination of acceptable variation domains for 
exponents n2 and n3, as shown in Tabs. 3-6. The 
following concluzions can be drawn: 
– as exponent n1 gets larger values, the acceptable 
variation domains of exponents n2 and n3 increase; 
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– an increase of the number of lobes implies the need 
of choosing a larger exponent n1; 

– if parameters a and b are different and there is an 
odd number of lobes, open curves are generated. 

Table  3. The variation of exponents n1, n2, n3 and pitch curve examples for a = b and n = 2 

 
Table 4. The variation of exponents n1, n2, n3 and pitch curve examples for a = b and n = 3 

 
Table 5. The variation of exponents n1, n2, n3 and pitch curve examples for a≠b and n = 2 

 
Table 6. The variation of exponents n1, n2, n3 and pitch curve examples for a ≠ b and n = 3 
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4. TOOTH GENERATION BY 
SHAPER 

 
The simulation of gear manufacture process, in 

case of convex pitch curves, are based on the use of a 
standard rack cutter and the problem has been covered 
in another paper [19]. As regard the noncircular 
convex-concave gear generation, using a shaper 
cutter, the “cutting process” is related to the following 
coordinate systems (Fig. 3): OfXfYf  is a fixed 
coordinate system, with the origin in the first point of 
contact, T0, between the pitch curves of the gear and 
tool, respectively, with Yf axis in the direction of the 
common tangent to the curves, in T0; O1X1Y1 is a 
mobile coordinate system, rigidly attached to the gear, 
with the origin in the polar center of the pitch curve; 
OcXcYc – a mobile coordinate system, rigidly attached 
to the shaper, with the origin on Xf axis.    

The simulation of the gear generation is based 
on the following kinematics: 
– the gear is rotated around it’s center O1, with 
angular speed ωrr, respectively angle γr, and translated 
along axes Xf and Yf, on the distances xrt and yrt, 
respectively (Fig. 3): 

 (13) 
 

 (14) 
 

 (15) 
 

where (θ1) defines the orientation of the tangent (t) 
to the gear pitch curve, at current point, 

 
(16) 

– the shaper is rotated with angular speed ωcr, 
respectively angle γc: 

 
(17) 

where s(θ1) is the distance of rolling, respectively the 
length of the arc T0T: 
 

 
(18) 

 

 
a) b) 

Fig. 3. Kinematics of gear generation with the shaper in initial position (a) and current position (b) 
 

Table 7. Examples of noncircular gears with convex-concave pitch curves 

  
a = b = 1, n = 4, n1 = 1, n2 = n3 = 3, z = 44 a = b = 1, n = 6, n1 = 1, n2 = n3 = 2.8, z = 72 
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The kinematics parameters are calculated in 
Matlab, by a precision of 10-15, and imported in 
AutoCAD environment were the tooth flanks cutting 
process is simulated using solid models and boolean 
operations. The precision of the tooth flank profiles is 
obviously influenced by the calculus in Matlab, the 
rotational increment of the shaper and the complexity 
of the solids manipulated in AutoCAD. Therefore, for 
certain pitch curve geometries and tooth parameters, 
the last tooth generated could exhibit an undesire 
width. Solutions for a proper gear generation 
simulation consist in a reposition of the shaper in the 
gear center before any gear movement or in a partial 
gear generation and multiplication of the gear sector 
for simmetrical shapes. Examples of noncircular gears 
generated with a shaper cutter (m = 2 mm, α = 20o) 
are presented in Tab. 7. 

 
5. CONCLUSIONS 
 
Three aproaches are mentioned in literature as 

regard to noncircular gear generation: enveloping 
theory, analytical generation and simulation of the 
gear manufacture. In this paper the simulation 
alternative has been chosen, in the hypothesis of 
defining the driving pitch curve as Gielis’ supershape. 
Limitation of its six parameters variation is necessary 
in order to i) exclude pointed shapes and curves with 
very small curvature radii and ii) avoid undercutting, 
considering specific tools reccomended by the pitch 
curve geometry.  

The paper is focused on convex-concave gear 
generation that imposed: identification of gear pitch 
curve geometry, ie selection of convex and convex-
concave curves is automatically made, analysis of 
defining parameters that allowed proper convex-
concave supershapes, that could be used for 
noncircular pitch curves, and development the 
simulation of gear generation. 

The simulation of gear generation process, by a 
shaper cutter, is made in AutoCAD environment, 
based on the interference of Matlab and AutoLISP 
codes. The complex geometries of the solids 
manipulated in AutoCAD and numerical approaches 
for the kinematics parameters calculus in Matlab 
recommend the simulation of gear generation as a not 
very precise and fast solution to generate the tooth 
flanks. For further investigations on gear 
performances, the authors also developed an 
analytical method for noncircular gear generation. 
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